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Abstract. Reachability analysis is frequently used to study the safety of

control systems. We present an implementation of an exact reachability

operator for nonlinear hybrid systems. After a brief review of a previ-

ously presented algorithm for determining reachable sets and synthesiz-

ing control laws|upon whose theory the new implementation rests|an

equivalent formulation is developed of the key equations governing the

continuous state reachability. The new formulation is implemented using

level set methods, and its e�ectiveness is shown by the numerical solution

of three examples.

1 Introduction

The reachability operator, a function or algorithm that can determine the evo-

lution of sets of trajectories, is key in the synthesis and veri�cation of controllers

for continuous, discrete or hybrid systems. Regardless of whether reachability

appears implicitly, such as in the generation of invariant sets, or explicitly, no

technique for determining safe control systems can avoid its use. It is natural

that methods for its accurate, automatic computation are attracting consider-

able attention.

Reachability analysis of hybrid systems has been investigated by both the

computer science and control communities. Methods have been developed by

computer scientists for computing reachable sets for timed automata [1] and

linear hybrid automata [2], for which computation is based on the propaga-

tion of polygonal sets under constant rate dynamics. Tools have been developed

to perform such calculations automatically [3, 4], and to synthesize controllers

in such a framework [5, 6]. Control theorists have extended reachability tools

from continuous state and time dynamical systems theory to incorporate dis-

crete switches [7{11]. However, the e�cient computation of reachable sets for

hybrid systems with nonlinear dynamics remains a di�cult problem to solve.

Numerical techniques which over-approximate the nonlinear dynamics with lin-

ear dynamics [12], or which over-approximate the reachable sets [13{16], have

recently been developed.
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In this paper, we present an implementation of an exact reachability operator

for nonlinear hybrid systems. An algorithm which synthesizes control laws for

such systems based on the Hamilton-Jacobi equation [9{11] is reviewed, and

then a new Hamilton-Jacobi formulation with superior numerical properties is

developed and proved to be equivalent. While level set techniques were previously

investigated for the solution of such equations in [17], we have added several

improvements to the basic level set algorithm. Examples from [11] demonstrate

the results of applying the new algorithm to the new equations|examples which

have never previously been solved computationally.

2 Deriving Reachable Sets in Hybrid Automata

In [11], an algorithm is presented which characterizes the reachable set of a non-

linear hybrid automaton (with desired safety properties) as that whose boundary

is the zero level set of a particular Hamilton-Jacobi equation. The algorithm also

computes the continuous and discrete control laws to maximize the safe oper-

ating region. In this section, we briey review this hybrid system model and

reachability algorithm, and then present a second characterization using a simi-

lar Hamilton-Jacobi algorithm with better numerical properties.

2.1 Hybrid Automata and Hamilton-Jacobi Equations

A hybrid automaton is de�ned as

H = ((Q�X); (U �D); (�u ��d); f; �; Inv; 
) (1)

whereQ is a �nite set of discrete states,X = Rn, U � Rnu is the set of continuous

control inputs, D � Rnd is the set of continuous disturbances, � = �u � �d is

a �nite set of actions, where �u denotes the set of discrete control inputs, and

�d the set of discrete disturbance inputs, f : Q�X � U �D ! R
n de�nes the

ow of continuous trajectories, � : Q � X � �u � �d ! 2Q�X is the discrete

transition function, Inv � Q � X is the invariant associated to each discrete

state, and 
 is an acceptance condition|here 
 = (2F ), meaning that the

state of the system must remain within a set F � Q �X . We denote U as the

set of piecewise continuous functions from R to U , and D the set of piecewise

continuous functions from R to D.

Three operators are de�ned:

Preu(K) = f(q; x) 2 Q�X j9�u 2 �u 8�d 2 �d �(q; x; �u; �d) � Kg \K

Pred(K) = f(q; x) 2 Q�X j8�u 2 �u 9�d 2 �d �(q; x; �u; �d) \K
c 6= ;g [Kc

Reach(G;E) = f(q; x) 2 Q�X j 8u 2 U 9d 2 D and t � 0 such that

(q(t); x(t)) 2 G and (q(s); x(s)) 2 Inv nE for s 2 [0; t]g

where K � Q�X ; G;E � X ; and (q(s); x(s)) is the continuous state trajectory

of _x = f(q(s); x(s); u(s); d(s)) starting at (q; x). The set Reach(G;E) describes

those states from which, for all u(�) 2 U , there exists a d(�) 2 D, such that the



state trajectory (q(s); x(s)) can be driven to a \bad" set G while avoiding an

\escape" set E. With these de�nitions in place, the algorithm for reachability

analysis for hybrid systems proceeds as follows [10, 11]:

Let W 0 = F;W�1 = ;; i = 0:

While W i 6=W i�1 do

W i�1 =W i nReach(Pred(W
i); P reu(W

i)))

i = i� 1

end

If the algorithm terminates after a �nite number of steps, then the �xed point

W � is the largest set of states for which the control (u(�); �u[�]) can guarantee

that the state of the hybrid system remains inside F despite the action of the

disturbance (d(�); �d[�]). In order to implement this algorithm, Preu, Pred, and

Reach need to be computed. The calculation of Preu and Pred requires inversion

of the transition relation � subject to the quanti�ers 9 and 8. The computation

of Reach requires an algorithm for determining the set of initial conditions from

which trajectories can reach one set, avoiding a second set along the way. Our

focus in this paper is on numeric computation of the latter operator.

Let lG : X ! R and lE : X ! R be di�erentiable functions such that

G
�

= fx 2 X jlG(x) � 0g and E
�

= fx 2 X jlE(x) � 0g. Consider the following

system of interconnected Hamilton-Jacobi equations [11, 17]:

�
@J�

G
(x; t)

@t
=

(
H�

G
(x;

@J
�

G
(x;t)

@x
); for fx 2 X j J�

G
(x; t) > 0g;

minf0; H�

G
(x;

@J
�

G
(x;t)

@x
)g; for fx 2 X j J�

G
(x; t) � 0g

(2)

�
@J�

E
(x; t)

@t
=

(
H�

E
(x;

@J
�

E
(x;t)

@x
); for fx 2 X j J�

E
(x; t) > 0g;

minf0; H�

E
(x;

@J
�

E
(x;t)

@x
)g; for fx 2 X j J�

E
(x; t) � 0g

(3)

where J�
G
(x; u(�); d(�); 0) = lG(x) and J

�

E
(x; u(�); d(�); 0) = lE(x), and

H�

G
(x;

@J�
G

@x
) =

�
0; for fx 2 X j J�

E
(x; t) � 0g

maxu2U mind2D
@J

�

G

@x
f(x; u; d); otherwise

(4)

H�

E
(x;

@J�
E

@x
) =

�
0; for fx 2 X j J�

G
(x; t) � 0g

minu2U maxd2D
@J

�

E

@x
f(x; u; d); otherwise

(5)

Theorem 1 (Characterization of Reach-Avoid [11]) Assume that J�
G
(x; t)

(J�
E
(x; t) respectively) satis�es the Hamilton-Jacobi equation (2) ((3) respec-

tively), and that it converges uniformly in x as t ! �1 to a function J�
G
(x)

(J�
E
(x) respectively). Then,

Reach(G;E) = fx 2 X j J�
G
(x) < 0g (6)

Proof. Please see [11]. ut

By our convention, we assume that the unsafe sets, de�ned as G� and its back-

wards reachable set under (2)-(5), are open; and safe sets, de�ned as E and its

backwards reachable set, are closed.



2.2 An Equivalent Hamilton-Jacobi Formulation

Although the Reach operator can be computed by solving the equations (2){(5),

in practice the discontinuous right hand sides of the equations introduce serious

numerical instabilities into the computation. Consider instead the standard form

of the Hamilton-Jacobi equation:

�
@JG(x; t)

@t
= HG(x;

@JG(x; t)

@x
) = max

u2U

min
d2D

@JG

@x
f(x; u; d); (7)

�
@JE(x; t)

@t
= HE(x;

@JE(x; t)

@x
) = min

u2U

max
d2D

@JE

@x
f(x; u; d); (8)

with the same initial conditions as those used for J�
G
and J�

E
: JG(x; 0) = lG(x)

and JE(x; 0) = lE(x). Now let:

Jmin
G

(x; t) = min
�2[t;0]

JG(x; �); (9)

Jmin
E

(x; t) = min
�2[t;0]

JE(x; �); (10)

JG(x; t) � �Jmin
E

(x; t); (11)

JE(x; t) � �Jmin
G

(x; t): (12)

Constraints (9) and (10) replace the \min" on the right hand side of equations

(2) and (3), thus ensuring that sublevel sets of Jmin
G

(x; t) and Jmin
E

(x; t) do not

shrink as time ows backwards; constraints (11) and (12) replace the \freezing"

of the Hamiltonian on the right hand sides of equations (4) and (5) and ensure

that the interiors of the two sets do not overlap, since for a given x 2 X , if

Jmin
E

(x; t) < 0, then (11) will force JG(x; t) � 0; conversely, if Jmin
G

(x; t) < 0

then JE(x; t) � 0.

Lemma 1 (Equivalence of Solutions) The solution J�
G
(x; t) to (2){(5), and

the solution Jmin
G

(x; t) to (7){(12), are equivalent in that, for any x 2 X, they

satisfy one of

J�
G
(x; t) � 0 if and only if Jmin

G
(x; t) � 0 (13)

J�
G
(x; t) < 0 if and only if Jmin

G
(x; t) < 0 (14)

for all t � 0.

Proof. We choose a particular x 2 X and assume that the computation starts

at �nal time t = 0 and works backwards into negative time. Also, assume that

the interiors of the initial sets do not intersect: G� \ E� = ;.

Case 1 (x is in G at t = 0). Thus lG(x) � 0, which implies from (2) 8t < 0

that J�
G
(x; t) � 0 and from (9) that Jmin

G
(x; t) � 0. Thus, for such x, (13) holds.

Case 2 (x is in E at t = 0). Thus lE(x) � 0, meaning that J�
E
(x; 0) � 0

and JE(x; 0) � 0, and in addition, due to our assumption that the interiors

of the initial sets are disjoint, J�
G
(x; 0) � 0 and JG(x; 0) � 0. By (3), 8t < 0



J�
E
(x; t) � 0, and so by (4) J�

G
(x; t) = J�

G
(x; 0) � 0. In our new formulation,

JE(x; 0) � 0 implies Jmin
E

(x; t) � 0 8t � 0; by (11) JG(x; t) � 0, which in turn

implies Jmin
G

(x; t) � 0;8t < 0. Thus, 8t � 0, J�
G
(x; t) � 0 and Jmin

G
(x; t) � 0. By

the contrapositive, for such x, (14) is true.

Case 3 (x is outside both G and E at t = 0). Thus, lG(x) > 0 and

lE(x) > 0. Now, for all t � 0, x will remain outside both the reach and avoid

sets as long as the following constraints are satis�ed:

J�
G
(x; t) > 0

Jmin
G

(x; t) > 0
and

J�
E
(x; t) > 0

Jmin
E

(x; t) > 0
(15)

For an x under these conditions, (13) is trivially true. Furthermore, while this

situation holds, the constrained PDEs (2){(5) are equivalent to the PDEs and

constraints (7){(12), and so J�
G
(x; t) = JG(x; t) and J�

E
(x; t) = JE(x; t). Now

consider what will happen if the boundary of one or both of the reach or avoid

sets reaches x. Choose � < 0 to be the �rst time t that either boundary reaches

x.

If J�
G
(x; �) = JG(x; �) = 0, then (2) guarantees J�

G
(x; t) � 0 for t � � and (9)

guarantees Jmin
G

(x; t) � 0 for t � � . Consequently, for such x, (13) holds 8t � 0.

By choice of � , we know that if J�
E
(x; �) = JE(x; �) = 0, then J�

G
(x; �) � 0

and Jmin
G

(x; �) � 0. By (3), 8t � � , J�
E
(x; t) � 0, which implies by (4) that

J�
G
(x; t) � 0. Since JE(x; �) = 0 implies 8t � � that Jmin

E
(x; �) � 0, (11)

requires 8t � � that JG(x; t) � 0, and so Jmin
G

(x; t) � 0. Therefore, for such

x, (13) holds for � < t � 0 and (14) holds for t � � . ut

We wish to use Lemma 1 and Theorem 1 to claim

Reach(G;E) = fx 2 X j Jmin
G

(x; t) < 0g:

However, the two cases (13) and (14) allowed by Lemma 1 must be reconciled

before such a claim is true. We do so by making the assumption that the sets

de�ned by (13) are the closures of the sets de�ned by (14)1.

Given this assumption, the formulation (7){(12) provides a characteriza-

tion of the reach-avoid operator which is numerically more stable than (2){(5).

While the new formulation does smooth out the solution of the Hamilton-Jacobi

equations, it is worth noting that discontinuities in u, d, or f will still lead to

non-smooth solutions of (7){(12), and that even if these system parameters are

all smooth, it is possible for discontinuous \shocks" to develop as the solution

evolves.

3 Computing Reachable Sets

The continuous Hamilton-Jacobi partial di�erential equation appears frequently

in applied mathematics, and so numerical methods for its solution have been

1 This assumption will hold true as long as the functions J�
G
and Jmin

G
do not develop

plateaus. It turns out to be prudent to avoid plateaus for numerical reasons as well,

and we describe a method to avoid their formation in the next section.



well studied [18]. In particular, a set of algorithms called level set methods [19,

20] have been developed to study the propagation of moving interfaces and

boundaries using these equations.

A numerical algorithm to solve the Hamilton-Jacobi equations (7){(12) was

developed in [17]; however, the emergence of numerical instabilities meant that

the reach set could be computed for only a few dozen timesteps, and even over

that short period, sharp edges tended to become rounded by di�usion. Armed

with the better behaved (7){(12) and a new level set implementation, we are

able to tackle more complex examples below, tracking the reach set over any

�nite time interval without signi�cant loss to di�usion.

3.1 Level Set Method Design

The basic method for solving (7) and (8) is the same as that described in [17]: a

�rst-order, upwinding, �nite di�erence scheme that produces an approximation

of the viscosity solution to the Hamilton-Jacobi equation [20{22]. We outline

several details of our implementation.

Initial conditions: A characteristic of level set methods is that the \level

set function" (we use J in the following to represent JG in (7) or JE in (8)) is

de�ned as the distance to the boundary being tracked, where distance is negative

on the inside of the boundary. Such a de�nition is compatible with the analysis

in the previous section, and so we adopt it for our level set functions.

Boundary conditions: The spatial derivatives in the Hamilton-Jacobi equa-

tion are approximated at a grid point by taking di�erences between the function

values at neighboring grid points. For points at the edge of the �nite grid, this

procedure breaks down. Typical level set methods use Neumann boundary con-

ditions (
@J(x;t)

@n
= 0, where n is an outward pointing normal) to determine the

value of grid points on the boundary. This procedure tends to introduce plateaus

to the level set function J close to the boundary, so that it no longer properly

measures the distance to the boundary.

Enforcing the constraints: To enforce the constraints (11) and (12), a

\max" operator is applied: at each timestep t, for all x,

JG(x; t) = max(JG(x; t);�J
min
E

(x; t))

and similarly for JE(x; t). This procedure, called masking JG with Jmin
E

, is used

in level set methods to ensure that the moving boundary represented by JG
does not enter the forbidden region de�ned by Jmin

E
(since Jmin

E
(x; t) � 0 =)

JG(x; t) � 0).

An additional complication arises from the discrete timesteps taken by the

numeric solver: it is possible for the constraints (11) and (12) to become vi-

olated since the various J functions are changing over time and the masking

procedure is only applied at the end of each timestep. A conservative solution is



to compute (7){(12) in the order:

compute JG(x; t��t) from Hamilton-Jacobi equation,

compute JE(x; t��t) from Hamilton-Jacobi equation,

JG(x; t��t) = max(JG(x; t��t);�Jmin
E

(x; t))

Jmin
G

(x; t��t) = min(JG(x; t��t); Jmin
G

(x; t))

JE(x; t��t) = max(JE(x; t��t);�Jmin
G

(x; t��t))

Jmin
E

(x; t��t) = min(JE(x; t��t); Jmin
E

(x; t))

Masking JG with Jmin
E

from the previous timestep, but masking JE with Jmin
G

from the current timestep ensures that if the reach and avoid sets grow together

and overlap, the reach (unsafe) set is over-approximated, and the avoid (safe)

set is under-approximated.

Reinitialization: Level set methods attempt to maintain the level set func-

tion as a distance measure to the boundary as it evolves. Numeric solutions tend

to distort the distance function considerably: the level set function becomes

distorted by limited precision computations, discretization and the Neumann

boundary conditions. Because the zero level set is the only information of im-

portance to us, a procedure which resets the level set function so that it correctly

measures the distance to the current zero level set|without changing the shape

of that level set|would smooth out numerical errors in the level set function

and yet leave its important data unharmed. This process, called reinitialization,

is accomplished in the examples below by running a few discrete timesteps of a

solver for the partial di�erential equation

@JG(x; t)

@t
= sign(JG(x; t))(1� j grad(JG(x; t))j)

(and similarly for JE). This process restores the property j grad(JG(x; t))j �

1 near the zero level set, so that JG is smoothed to approximate a distance

measure.

3.2 A Single State, Straight Flight Example

Consider an example representing two aircraft ying at a �xed altitude and con-

stant heading. Each aircraft is allowed to choose its own speed from a given range

of values; we control one aircraft and the other is considered the disturbance.

Using relative coordinates, in which the controlled aircraft is at the origin with

a heading angle of zero, the dynamics of the system are described by

_xr = �u+ d cos r; _yr = d sin r; _ r = 0; (16)

where xr and yr are the relative spatial coordinates, and  r is the relative

heading. The controller fails if the disturbance aircraft manages to enter a circle

of radius �ve units centered at the controlled aircraft at the origin, so lG(x) =

x2
r
+ y2

r
� 52.
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Fig. 1. Shaded Region represents Reach(G; ;) for the Straight Flight Single State Ex-

ample

If the control (speed of the controlled aircraft) is restricted to u 2 U =

[u; u] � R+ and the disturbance (speed of the disturbance aircraft) is restricted

to d 2 D = [d; d] � R
+, then it was shown in [11, 23] that the optimal control

and worst disturbance are

u� =

(
u; if xr > 0;

u; if xr < 0;
d� =

(
d; if (xr cos r + yr sin r) > 0;

d; if (xr cos r + yr sin r) < 0:
(17)

Because there is only a single discrete state, the controlled aircraft has no discrete

action to force an unsafe continuous state to become safe, and so the avoid set

is empty. Given the de�nition of the unsafe set G = fx 2 X jlG(x) � 0g, the set

of unsafe states Reach(G; ;) is shown shaded in Figure 1. The parameters for

the example were chosen to be the normalized values:

 r =
7�

12
; U = [u; u] = [2; 4]; D = [d; d] = [1; 5]:

The dashed circle shows the initial unsafe set G, and the grey arrows show the

ow �eld (16) induced by the optimal control choices (17). Notice that the level

set algorithm resolves the sharp corners of Reach(G; ;) at the points where u�

or d� switch.

This example and those below were coded in Matlab 5.3 on an unloaded Sun

UltraSparc 10 (a 300 MHz UltraSparc processor with 512 KB cache and 128 MB

main memory). Figure 1 was produced from a run with grid spacing �x = 0:1

(requiring about 63000 grid points). The 360 timesteps took just under four

minutes to complete.



120
R

Mode 1 Mode 2 Mode 3

Fig. 2. Aircraft Behavior in the Three Modes

q2

<z π

q
3z := 0

2
π( )R xr

yr
:=xr

yr
z := 0

2
π( )R xr

yr
:=xr

yr

z π=

xr = u d+ cos r
yr = d sin

ψ
ψr

ψr= 0
z = 0

xr = u d+ cos r + yr
yr = d sin

ψ
ψr xr

ψr= 0
z = 1

xr = u d+ cos r
yr = d sin

ψ
ψr

ψr= 0
z = 0

q1

cruise1 avoid cruise2

σu d
σ

Fig. 3. System Dynamics for the Three Mode Example

3.3 A Three State Example

This example again features the collision avoidance maneuvers of two aircraft at

�xed altitude; however, the control is now allowed to initiate a discrete change

of state for the system. As shown in Figure 2, the aircraft begin in straight ight

at a �xed relative heading (mode 1). At some time, the control may switch both

aircraft into mode 2; at which point each makes an instantaneous heading change

of 90�, and begins a circular ight path. After completing a semicircular arc in

� time units, both aircraft switch to mode 3, make another instantaneous 90�

turn, and resume their original headings from mode 1.

The dynamics for the system are shown in Figure 3. In this example, the

controller has only a single action: the switch from mode 1 to mode 2. The speed

of both aircraft is constant, and the only disturbance action is the uncontrolled

switch from mode 2 to mode 3, which occurs a �xed time after mode 2 is entered;

the variable z in mode 2 is simply a clock to enforce this switch. The parameters

used in the run below are

 r =
2�

3
= 120�; u� = 3; d� = 4:

More details on this example can be found in [9, 11].

Running the reachability analysis algorithm to compute W � requires com-

puting the Pred and Preu operators for each mode. Let Rk

i
be the set of unsafe

states computed for mode i in iteration k; in other words, the projection of



Reach(Pred(W
k+1); P reu(W

k+1)) onto the continuous state space of mode i

for iteration k < 0 (let R0
i
= G to handle the k = 0 case). Then the set of safe

states at iteration k < 0 can be written as W k = ([0
j=k [

3
i=1 R

j

i
)c. De�ne the

collision set as before: G = fx 2 X jlG(x) � 0g, where lG(x) = x2
r
+ y2

r
� 52. We

can then deduce the precursor operators.

{ For mode 3, there are no discrete actions. This mode may be inhabited

for any length of time. The projections of the precursor operators onto the

continuous state space of mode 3 are:

Preu(W
k) = ;; P red(W

k) = Rk

3 :

{ For mode 2, an uncontrolled discrete action switches the system to mode

3, and there are no controlled discrete actions. This mode is inhabited for

exactly � time units. The projections of the precursor operators onto the

continuous state space of mode 2 are:

Preu(W
k) = ;; P red(W

k) = (Rk

3 rotated �

2
) [ Rk

2 :

{ For mode 1, a controlled discrete action switches the system to mode 2,

and there are no uncontrolled discrete actions. This mode may be inhabited

for any length of time. The projections of the precursor operators onto the

continuous state space of mode 1 are:

Preu(W
k) = (Rk

2 rotated �

2
)c; P red(W

k) = Rk

1 :

Figure 4 shows the results of the reach-avoid computation at each iteration

for each mode; unsafe states (complement ofW k) are shaded. The set Rk

i
appears

in column i and row k. A �xed point W � of safe states is computed after three

iterations, and the corresponding bad states of the �xed point (W �)c are shaded

in the �nal row of plots.

The unsafe region for mode 1 is the most interesting|as long as the distur-

bance aircraft is not in this region, the control may initiate the switch to mode

2 and have con�dence that the remainder of the maneuver will be carried out

safely. The width of the unbounded portion of the unsafe set is controlled by the

radius of the turn in mode 2, and can be removed entirely by making the radius

large enough.

The four iterations of this simulation, with a grid spacing of �x = 0:1 (or

about 90000 grid points) each required about 1400 timesteps; for stability rea-

sons, mode 2 was slightly more than half of the work. Wall clock time was about

75 minutes.

3.4 A Three Dimensional Example

To show that this technique extends easily to higher dimensions, we look at a �nal

aircraft collision avoidance scenario. The model is very similar to that examined
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Fig. 4. Unsafe Sets for Three Mode Example

in the �rst example, except that this time we allow the relative heading of the

aircraft to change. Relative angle  r 2 [0; 2�) is thus our third dimension.

We �x the airspeed of the control aircraft at v1 and that of the disturbance

aircraft at v2. The control and disturbance inputs are now the angular velocity

of the aircraft: u 2 U = [!1; !1] � R and d 2 D = [!2; !2] � R. The model is

_xr = �v1 + v2 cos r + uyr; _yr = v2 sin r � uxr; _ r = d� u;

For the case where

!1 = !2 = �1; !1 = !2 = +1;

it was shown in [11, pp. 60-62] that the optimal control and disturbance are

given by

u� = sign

�
yr
@JG

@xr
� xr

@JG

@yr
�
@JG

@ r

�
d� = � sign

�
@JG

@ r

�



Fig. 5. Unsafe Region for Three Dimensional Example

Because there is only a single discrete state and no discrete actions, the avoid

set is empty; the unsafe set is the cylinder G = fx 2 X jlG(x) � 0g where

lG(x) = x2
r
+ y2

r
� 52. A view of Reach(G; ;) for airspeed v1 = v2 = 5 is shown

in Figure 5.

Extending the level set code to three dimensions was painless|a new index

for all matrices and a set of boundary conditions (periodic in  r) had to be

added. Visualization of the zero sublevel set becomes considerably trickier, but

it can be done with Matlab's new isosurface tools. With a grid spacing of �x =

0:2 (approximately 400000 grid points), the 400 timesteps required to generate

Figure 5 took about 80 minutes to complete.

4 Research Directions

We have presented a numerical algorithm for computing reachable sets of hybrid

automata. The algorithm handles nonlinear dynamics with discontinuities, as

illustrated by example calculations of both continuous and multi-mode aircraft

conict resolution maneuvers. We are currently investigating further in several

directions.

For the examples above, the discrete predecessor maps Pre were determined

by hand and hard-coded into the scripts which computed the continuous reach-

avoid operator. It is necessary to automatically compute those maps; this will

require elimination of existential and universal quanti�ers over the set of discrete

actions.



As with all �nite di�erence methods, this implementation �nds an approxi-

mation to the actual solution of the Hamilton-Jacobi equation. In fact, the �nal

example provides proof of the dangers of such approximations: the helical bulge

of the unsafe set shown in Figure 5 is computed to protrude farther out if grid

spacing is reduced. Methods to quantify the error between exact and approxi-

mate reachable sets have not been developed, yet are crucial for proving safety

properties. In the reach-avoid calculation, we could use information about error

to provide an over-approximation of the unsafe set and an under-approximation

of the safe set.

In [9{11], control laws are synthesized assuming that the reach and avoid

sets are computed exactly. The implications of set approximation on this process

must be evaluated.

As can be seen from the �nal example, these techniques extend easily to

higher dimensions|beyond three dimensions visualization becomes impossible,

but the basic level set algorithm remains the same. Of major concern, though,

is the exponential growth in the number of grid points as dimension increases.

Because the timestep depends on the grid size, using rectilinear gridding with

a grid spacing of h in d dimensions requires O(hd+1) work. However, we are

currently investigating techniques which will lead to considerable time savings:

using compiled code instead of Matlab, computing only on grid points near the

zero level set (e�ectively reducing the dimension of the problem by one), taking

advantage of the abundant opportunities for parallelism in the algorithm, and

projecting higher dimensional sets onto lower dimensional subspaces.
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