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Abstract – The result of a measurement or a computation can not be complete unless it is accompanied by a quantitative indication of its uncertainty. Understanding true meaning of using numbers while expressing results, thoughts, ideas, truth, etc., is important, therefore, fundamental innumeracy terms and concepts are reviewed and randomness in tests, experiments and numerical calculations is summarized.
1. Introduction 
We hear everyday on the TVs, or read on the newspapers, phrases like “The conducted measurements yield that the highest peak of the Earth, peak Everest, is 8872m above the sea level”, “National Institute of Statistics (NIS) declare that the unemployment rate, which was 9.7% last year, reduces to 9.5% this year”, or “Scientists measured the speed of light as 299.793 km/s”. Have you ever thought about the meaning of giving numbers or speaking with numbers? For example, what conclusions can be drawn from the NIS’s declaration? Is it obvious that unemployment rate has been falling dawn since last year? What can you say if somebody claims that unemployment rate might be rising up? Think about another phrase you listen to the radio like “The polls show that, with a 95% confidence level the votes of Democrats is (32(2)%”. What does it mean with 95% confidence level? How confident is the confidence level itself? What if the confidence level is 99%? 

Engineers speak with numbers. Speaking with numbers recalls a measurement or a numerical calculation [1]; a measurement or a numerical calculation means using a model. A model means mathematical representations after a series of observations, experimentations, assumptions, approximations, and simplifications. It necessitates a good understanding of fundamental concepts of a measurement and/or a numerical calculation. Every assumption and approximation means neglecting something and introducing extra error and/or uncertainty. It is essential to specify the error and uncertainty bounds of a numerical result if it is scientific. Concepts, such as error, uncertainty, accuracy, precision, sensitivity and resolution should be well-understood. You may meet someone who presents his/her results with, for example, 12-digit accuracy while the numerical error limits it to, for example, 8-digits, and, while only 2-digit is meaningful because of the approximations made there. What do all these mean? 

2. Measurement, calculation and error analysis
A number is given as a result of a measurement or a computation. What quantities can be measured or calculated? Basic quantities such as length, weight, time, voltage, current, stress, temperature, electric and magnetic fields, etc., can be measured; any other quantity that can be specified in terms of these can be calculated. For example, the value of a resistor can be calculated via 
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if the voltage across its terminal and the current flowing through are measured. The results of multiple measurements using different devices with different precisions; even measurements with the same device; are observed to have distributions. What is the meaning of device precision, parameter sensitivity, or numerical accuracy? 

Before giving the answers of all these questions, let’s agree on these basic concepts and on their definitions [2,3]:
· Accuracy: 

It is the closeness of the measured or calculated quantity to its exact value.
Measurement accuracy is the ability of a device to measure a quantity within a stated error bounds. Numerical accuracy is the closeness of a result obtained via a numerical model which represents a physical system to the exact value of the quantity. The accuracy is expressed in terms of error.
· Error: 

It is the difference between a measured or calculated value of a quantity and its exact value. The error may be systematic or random.
Systematic error: 

It is an error which plagues experiments or calculations caused by negative factors. For example, a DC voltage component, which unintentionally is present, e.g., because of a failure on the blockage capacitor during an AC voltage measurement, is a systematic error. Another example would be an ammeter which only displays 85% of the true voltage because of calibration problems. Systematic errors can be complex, but can be removed once understood or discovered via careful controls and calibration.

Random error: 

It is an error which is always present, but varies unpredictably in size and direction. They are related to the scatter in the data obtained under fixed conditions which determine the repeatability (precision) of the measurement. Random errors (fortunately) follow well-behaved statistical rules. Their effects can be reduced by repeating the measurement as often as possible.

Error can be given in one of two ways:  

Absolute error: 

It is an error that is expressed in physical units. It is the absolute value of the difference between the measured value and the true value (or the average value if the true value is not known) of a quantity.  

Relative error: 

An error expressed as a fraction of the absolute error to the true (or average) value of a quantity. It is always given as a percentage.
· Uncertainty: 

A range that is likely to contain the true value of a quantity being measured or calculated. Uncertainty can be expressed in absolute or relative terms.

The terms uncertainty and error have different meanings in modeling and simulation. Modeling uncertainty is defined as the potential deficiency due to a lack of information. On the other hand, modeling error is the recognizable deficiency not due to a lack of information but due to the approximations and simplifications made there. Measurement error is the difference between the measured and true values, while measurement uncertainty is an estimate of the error in a measurement.  Modeling and simulation uncertainties occur during the phases of conceptual modeling of the physical system, mathematical modeling of the conceptual model, discretization and computer modeling of the mathematical model, and numerical computations. Numerical uncertainties occur during computations due to the discretization, round-off, non-convergence, artificial dissipations, etc.

Measurement error is the difference between the measured and true value of a quantity; measurement uncertainty is the amount of predicted error. 
· Confidence level: 

It is the probability that the true value of the measurement or calculation falls within a given range of uncertainty caused by the inherent random nature. Confidence levels can be defined through a good understanding of the nature (probabilistic distributions) of the errors.

· Precision: 

It is a measure of closeness of the value obtained via multiple measurements and the true value. It is the total amount of random error present. A very precise measurement means a small random error. Precision is given as the percentage of the ratio of the value region to the true (or average) value of the quantity being measured. The value region is the difference between the maximum and minimum values in multiple measurements. Precision does not necessarily mean accurate results. It is proportional with the sensitivity of the measurement device; high precision implies high sensitivity.
· Sensitivity: 

It is the smallest change in a physical quantity that a measurement device can detect or sense. Statistical test sensitivity is the smallest probabilistic change.

Ideally, a measurement device is expected to have high precision and high accuracy. High precision alone does not guarantee high accuracy: For example, a device may have a high precision; all measurements may fall in a narrow value region, but the results may still be incorrect because of a systematic error present in the device.

· Resolution: 

It is the ability to resolve, to discriminate. It may also be defined as the smallest physically indicated division that an instrument displays or is marked.
Range resolution, azimuth resolution or velocity resolution in a radar, is the minimum distance, azimuth angle and velocity difference when two targets are no longer resolved in range, azimuth and velocity, respectively.

Numerical picture resolution, screen resolution, camera resolution are used for digital pictures and are defined as the distance between two nearby pixels. They are given as the number of pixels.
· Tolerance: 

It is the amount of uncertainty in materials physical characteristics. For example, resistor tolerance, inductor tolerance, etc.

3. Significant digits 

Numbers are expressed using the figures (numerals). The fundamental terms of a number are the most and least significant digits, truncation and round-off errors. The first non-zero numeral at the left of a number (which contributes the largest amount to the number) is called the most significant digit. The first non-zero numeral at the right of a number (which contributes the least amount) is the least significant digit. If a number has fractional terms then all the digits are significant. For example, each of these numbers has 5 significant digits:

45302, 45 257, 4.8010, 10001, 3920.0, 1000.0, 3.0000, 45032000, 5000100
A number is represented with a finite (fixed) number of digits called word length. Precision of a measurement or the accuracy of a computation bounds the number of significant digits. All non-zero digits beyond the number of significant digits at the right of a number are removed in one of two ways; truncation or round-off.  Leaving out the digits beyond the least significant digit is truncation and the error introduced via this process is called truncation error. Rounding the least significant digit according to the most significant digit of the left out part is called round-off, and the error introduced via this process is called round-off error. If the most significant digit of the truncated part is greater than 5, then the least significant digit of the number is increased by 1, otherwise is kept unchanged. For example, the number 53.0534 has 6 significant digits. If the number is going to be represented only by 4 significant digits both truncation and round-off processes yield 53.05. On the other hand, if the number of significant digits will be 3, then truncation and round-off processes yield, 53.0 and 53.1, respectively.

Truncation error is not defined only for the numbers. There is also a truncation error in modeling. For example, Taylor’s expansion or Fourier series representation are used to replace a function in terms of an infinite term summations. Taking only a given number of low-order terms and neglecting the rest of the high order terms introduces a truncation error. Actually, this truncation determines the number of significant digits in a computation. For example, using the Taylor’s expansion of an 
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and keeping only the terms up to the third order (i.e., x3 term) yields an absolute truncation error of 
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The absolute error in (2) is also an infinite term series therefore how it is going to be evaluated numerically is a challenge. In general, an upper bound for the error is specified. 

The number of significant digits helps to determine the uncertainty bounds (or the error) of a numerical value. For example, x=5000, y=5000., z=531 representations of x, y, and z show that these three quantities may take any value between 4500<x<5500, 4999.5<x<5000.5, and 530.5<x<531.5.  The reason for that is the number of significant digits in x, y, and z.   

How many digits of a number obtained via a measurement or a calculation are meaningful? The answer resides in the degree of uncertainty which means the amount of error. For example, the height of a building is measured to be d=5.280753m with a measurement uncertainty of 0.103m. How will the result be presented conveniently? The first step is to specify the uncertainty as an absolute error. The error could be rounded off in two ways; (d=0.10 or (d=0.1. Then the result for these two cases may be presented as d((d=5.28(0.10 and d((d=5.3(0.1, respectively. If the uncertainty has 3 significant digits as given, then the result should be given as d((d=5.281(0.103. An alternative way of presenting d((d=5.3(0.1 is d((d=5.3(1.00(0.018). In summary, the number of significant digits and the error must be in the same order!
4. Error propagation

A model which represents a physical (real-world) problem is built in terms of mathematical relations which uses measured and/or computed quantities. Error propagates because of model-based derived quantities. Propagation error is the error in the succeeding steps of a process due to an occurrence of an earlier error. A method or a result may become unstable due to the propagated error, if errors are magnified continuously during multiple derivations or iterative processes.

Consider a result of a measurement or a computation given as A((a. Here, A is the value, (a>0 is the absolute error, and (a/A is the relative error. If a quantity is expressed in terms of the addition or subtraction of two other quantities, either measured or computed, then the total (propagated) error is equal to the addition of absolute errors:
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If the quantity is given as the multiplication/division of two measured/computed quantities, then the total (propagated) relative error is equal to the addition of relative errors:
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For example, what is the total distance of a trip if the journey lasts 3 ( 0.1 hrs and average speed is 60 ( 0.5 km/hr? 
Answer: Since distance=velocity(time, the minimum distance is 2.9(59.5=172.55km (rounded to 172.6), and the maximum distance is 3.1(60.5=187.55km (rounded to 187.6). Similarly, the distance can be given as 180(7.6km if calculated from (4). 
In general, the total (propagated) error is obtained from these two properties:
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Finally, if 
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is a multi-variable function, then the total error is calculated from:
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5. Error and significance level
Suppose the voltage across the terminals of a resistor is going to be measured using a high precision voltmeter. Each time you repeat the measurement you come across with a different result basically because of randomly changing environmental factors. Now, suppose the problem at hand is to predict the average height of the students in a school, or the average income of the workers in a factory, etc., using sampling. The characteristic difference between natures of these two cases is the size of the value space called the population. The population in the voltage measurement is infinite, but the number of students in the school, or the workers at the factory is finite. 
No matter how you increase the number of voltage measurements, the results have a distribution which can be represented via the mean and variance, 
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(or its positive square root; standard deviation,
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Mean

The mean of a multiple measurement, repeated N times, is calculated as:
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Standard deviation

The standard deviation 
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 (or the error 
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of a measurement) is given as: 
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(N is also used instead of N-1 in the denominator, and the difference is negligible as N gets higher). The mean is a measure of central tendency, while the standard deviation is a measure of dispersion. 
On contrary to the resistor measurement, if all the students in a school or the workers in a factory is used in the measurements (i.e., sample space is equal to the population) the average height or income is determined without a distribution (of course, within the measurement error limits). Often in practice, the size of the population is too large to consider completely, therefore sampling is applied; the tests or measurements are conducted with a small randomly selected part of the population.   
For example, suppose there are 2450 students in the school and 100 of them are selected randomly for the measurements. The average height of these 100 students and the standard deviation are found to be 1.73m and 25cm, respectively. What can you say about the average height of the school? Can you predict this average value? How accurate will that prediction be? How does your prediction change if the size of the sample space is increased to 500, or 1000?
It can easily be shown that in most of the physical problems, where measurements or tests are repeated N times, the measured values are accumulated around an average value with a certain dispersion called Gaussian distribution. The Gaussian distribution or the Gauss function is determined with the average value x0 and the standard deviation
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A special case of the Gaussian distribution where the average is zero (x0=0) and the standard deviation is one (
[image: image18.wmf]1
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) is called Normal distribution:  
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If 
[image: image20.wmf]X

is a Gaussian random parameter (and x is its any value, measured or calculated) with average x0 and standard deviation
[image: image21.wmf]s

, then the transformation
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yields a random parameter 
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with a Normal distribution. Figure 1 shows the Normal distribution. 
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      Figure 1: The Normal distribution function  

Here, horizontal axis shows the random parameter
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, and the area under this curve between 
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is the probability of occurrence. The total area under the curve is equal to 1; meaning that the probability of measuring any value is 100%. The probability of measuring
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 (as will be shown below this probability is equal to 68.27%):  
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It is very easy to compute this integral numerically. For example, the MatlabTM  trapz(x,y) command can be used via the three-line script given below and the integral via the given limits can be computed with a given accuracy (here 1000 samples is used, but the number of samples increases as the desired accuracy increases). 

	> x=-1.0:0.001:1.0;

> y=1/sqrt(2.*pi)*exp(-x.^2/2);

> trapz(x,y)

> 0.6827


I
Here, x is an array containing 1000 elements between (1 and y is the 1000-element array of f(x) values corresponding to those x values. Trapz(x,y) command computes the numerical integral using the well-known trapezoidal rule. As shown above, the probability of having
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is 0.6827. Running the script again and again with different intervals yields the probabilities of other values. For example, the probabilities of having
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, respectively, is 0.9500, 0.9545, 0.9901, 0.9973. Here, 
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 are called critical values of the desired confidence levels. 
The horizontal axis may also be assumed to be the dispersion around the mean, i.e., the error after N measurements. If, for example, an N-element sample space has the average measured distance 
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with a standard deviation (absolute error)
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interval is %68.27 (the area of the Gaussian distribution function in (9), with the replacement of x with d, between 
[image: image45.wmf]d

d

ave

D

±

 interval, or the area of the Normal distribution function in (10) between 
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 give the same probability of %68.27). This probability value is called the confidence level. If a 99% confidence level is desired than the interval of the integral of (10) which yields 0.99, should be computed numerically. As done above, 99% confidence level requires an interval of 
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Prediction of the population’s confidence interval

The confidence interval for the population mean may be calculated in two ways. If the size of the population is infinite then
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is used to derive the population mean. Otherwise, 
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should be used for the population mean (here M and N are the sizes of the population and sample space, respectively). For example, assume there are M=4186 students in the school and only the heights of N=200 students are measured. Suppose, the average value and its standard deviation are found to be have=1.72m and(h=0.23m, respectively. What can be said about the mean height of all the students in the school (population) with %95 confidence level? As found after the measurements with the sample space, the mean height with a %68.27 confidence level is (1.72(0.23) m. It can be said that with the %95 confidence level the mean height of all student at school will be


[image: image52.wmf]m

h

h

h

ave

ave

03

.

0

72

.

1

200

23

.

0

96

.

1

±

=

´

±

=

D

±

.


Finally, if the number of measured samples is less than 30 then the distribution is more likely t-distribution (student’s distribution) [2].  In this case, the critical values
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in (12 and (13) is replaced with the critical values
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of the t-distribution. The difference between these two distributions is almost negligible if the sample space is greater than 30. Table 1 lists some widely used values of confidence levels and corresponding critical values of both distributions. Note that
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values of the t-distribution are for 15 measurements.  

    Table 1:  Some confidence levels and corresponding critical values
	Confidence level
	% 70
	% 80
	% 90
	% 95
	% 99

	Normal distribution (
[image: image56.wmf]a

)
	1.040
	1.280
	1.645
	1.960
	2.580

	Student dist. (for v=15,
[image: image57.wmf]b

)
	0.536
	0.866
	1.340
	1.750
	2.600


6. A short quiz 
A group of students is required to predict the received power of a transmitter at a given frequency and a distance d. The transmit power-Pt, the transmit antenna gain-Gt, the signal wavelength-(, and the distance-d are going to be measured and the received power is going to be calculated from
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After a series of conducted measurements the transmit power Pt is found to be 120kW with 1% accuracy. The wavelength is found to be
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. The transmit antenna gain is given to be 13dB with a relative measurement error of -20dB. Finally, the measurement results for the distance in kilometers, after 15 trials, are {7.54, 7.12, 7.09, 7.37, 7.86, 7.43, 7.03, 6.97, 8.04, 7.96, 7.61, 7.52, 7.80, 7.16, 7.77}. 

a) What is the average distance dave and its standard deviation (d (i.e., error bounds)?
b) What do you say that the distance d will be if 95% confidence level is required?

c) What would you expect the range error (d approaches with the same 95% confidence level if the number of range measurements tends to infinity?

d) What is the received power, 
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e) What may be the lowest level of the received power under 99.7% confidence level?

Answers:
a) The average transmit power is the mean of fifteen measurements:
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Adding all fifteen measured values and dividing the total by fifteen yields dave=7.4847 km. It should be noted that the number of significant digits here is two, so the result is rounded to dave=7.48 km. 


The distance error 
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In this case it is found to be
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b) The distance error
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 and shows a 68.27% confidence level. In order to reach a confidence level of 95% (
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 must be multiplied by 1.96. Therefore, the distance with 95% confidence level is
[image: image72.wmf](

)

m

d

d

d

m

3

10

25

.

0

48

.

7

96

.

1

´

±

=

D

±

=

. 
c) According to the sampling theory, for an experiment with the Normal distribution, the mean of the population can be predicted via (12) as
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d) The dB gain of the transmit antenna is given as
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The mean received power is calculated using
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The error in the received power can be calculated via
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In our case, 
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 and absolute error in the received power will be 0.32 (W. Therefore, the received power is 
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e) As mentioned above, 99.7% confidence level corresponds to (3( (equivalently, three times the absolute error). Therefore, the answer is
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7. Conclusions

People use numbers everywhere so public understanding of innumeracy is essential [4]. The society must be prepared accordingly, especially in terms of the meanings of the numbers pronounced. To some extend, everybody should be equipped to deal with data acquisition, correlation, using a model, statistics, randomness in the nature, risk management, information-based decision making, uncertainty and bounds of science. 
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