

EPRI In a nutshell – and EPRI's new research into the area of Circuit Breakers

Luke van der Zel EPRI – Power Delivery and Markets

Presentation Overview

- Thank you IEEE
- The 4 main ways EPRI operates
- EPRI's new Circuit Breaker research
 - How we started the program
 - Project 1: Refurbishment/Replacement Methodology
 - Project 2: Using protection for Circuit Breaker diagnostics
- EPRI and IEEE collaboration

ELECTRIC POWER RESEARCH INSTITUTE

2 2006 Electric Power Research Institute Inc. All rights reserve

The 4 main ways EPRI operates

EPRI Facts

- Collaborative R&D
- Non-Profit
- 33-year history
- 450 participants in over 40 countries
- 66 technical programs
- 1600+ research and demonstration projects annually
- 10 to 1 average funding leverage

ELECTRIC POWER RESEARCH INSTITUTE

2006 Electric Power Research Institute, Inc. All rights reserve

Some snippets of past EPRI Circuit Breaker research

- 1980-Present: Life Extension Guidelines
- 2000- present: SSCL
- 2001: Reliability Centered Maintenance (RCM) Technical Reference for Power Delivery
- 2002-2005: Integrated Monitoring and Diagnostics: Maintenance Ranking and Diagnostic Algorithms for Circuit Breakers
- 2002: The Management of SF6 (Sulfur Hexafluoride) Leakage
- 2003: UHF and AE Condition monitoring tools for GIS (and possibly outdoor and Hybrid breakers)
- 2004: Oil Analysis as a Diagnostic Tool for Circuit Breakers

© 2006 Electric Power Research Institute, Inc. All rights reserve

23

Ranking of candidate topics (Matched by voting by member dollars)

PROJECT	High	Medium	Low
Candidate 1 – End Of Life Model	7	1	
Candidate 2 - Risk-based Replacement Decision Support	7	1	
Candidate 3 - Health Index	6	2	
Candidate 4 - Establish Benefits of Using Available Data	3	4	
Candidate 5 - SF ₆ Guidelines		1	7
Candidate 6 - RCM FMEA		2	6
Candidate 7 - Breaker Industry Database Model	2	4	3
Candidate 8 - Replacement Parts Methodology	2	1	6
Candidate 9 - Collect and Catalogue Best Practices		6	2

© 2006 Electric Power Research Institute, Inc. All rights reserved

Ranking of candidate topics

PROJECT	High	Medium	Low
Candidate 1 – End Of Life Model	7	1	
Candidate 2 - Risk-based Replacement Decision Support	7	1	
Candidate 3 - Health Index	6	2	
Candidate 4 - Establish Benefits of Using Available Data	3	4	
Candidate 5 - SF ₆ Guidelines		1	7
Candidate 6 - RCM FMEA		2	6
Candidate 7 - Breaker Industry Database Model	2	4	3
Candidate 8 - Replacement Parts Methodology	2	1	6
Candidate 9 - Collect and Catalogue Best Practices		6	2

© 2006 Electric Power Research Institute, Inc. All rights reserved

25

Candidate 1- EOL Model

- Objective: Develop a practical and affordable circuit breaker endof-life model, to support decisions related to circuit breaker replacement or refurbishment.
 - Identification of factors and information, which should be included in the decision support model.
 - Relate information available to appropriate EOL factors for circuit breakers, with the application of appropriate factor values and weightings.
 - Apply the model to sample groupings of representative circuit breaker populations and perform a sensitivity study
- · Probability of technical success: High
- Number of utilities to which applicable: High
- Project length: Estimated 9 12 months (usable results)

© 2006 Electric Power Research Institute, Inc. All rights reserve

Candidate 2 – Risk-based Replacement Decision Support

- Objective: Compliment EOL model with a customizable risk-based business case analysis tool for circuit breaker replacement.
- Assist in risk-based analysis of various business scenarios and factors, taking into account safety, financial, reliability, business and regulatory drivers and factors.
 - Identify KPIs and measures,
 - Customize the weighing of each measure in accordance with utility's business, financial and regulatory drivers/environment
 - Identify the business cases to be considered
- · Probability of technical success: High
- Number of utilities to which applicable: Medium
- Project length: Estimated 9 12 months

© 2006 Electric Power Research Institute, Inc. All rights reserved

27

Candidate 3 - Health Index

- Objective: Develop a Circuit Breaker "Health" or "Action" Index
 - Develop a set of criteria which would contribute to a health index "score"
 - Establish appropriate weightings for each criterion, and establish which values would require action
 - Establish process for evaluation
- Probability of technical success: High
- Number of utilities to which applicable: High
- Project length: Estimated 9 12 months

© 2006 Electric Power Research Institute Inc. All rights reserve

Feedback from IEEE Monday presentation

- 1. Develop and document a practical methodology for circuit breaker replacement and refurbishment decisions
 - The work could provide a helpful summary of methodologies
 - The project could benefit from more input from field and equipment staff
- Research and demonstration of the appropriate use of new microprocessor relays for circuit breaker monitoring
 - Breaker contact wear monitoring should be set as a low priority compared to mechanism issues
 - A simple timing limit to quantify a slow trip may be a valuable starting point
 - A number of members have gathered data from relays but haven't seen the value yet. *There is thus an important gap to bridge to determine how to convert the data into information*.

© 2006 Electric Power Research Institute, Inc. All rights reserved.

ELECTRIC POWER RESEARCH INSTITUTE