TEST REPORT

Test Report No	2127
Test Date	March 13, 2008
Type of Test	Mechanical Capability
	Under Wind
Product	EV-1 4000 A from 500 kV
	Disconnect Switch

Wind Loading Withstand For EV-1 500kV, 1800BIL

Tests were performed in the outdoor laboratory of Southern States, Inc. in Hampton, Georgia on the subject switch.

Equipment

The tested switch was a type EV-1 500 kV 4000 A 1800 kV BIL switch.

Purpose

The purpose of this test was to evaluate open withstand capability of EV-1 switch, when subject to severe wind condition.

Procedure

The following tests were performed during August of 2003.

Switches equipped with gear drive mechanism were chosen during a production run. They were checked to provide a ratio of output-input torque required to move the blade, or applied to blade to turn the drive.

This ratio was later was put in place, when a specimen was placed on ground, and live parts were attached directly to the base. A calculated force was applied to blade, while readings were taken at switch bearing. The force was calculated based on NEMA SG-6 standard (P=SV², Where S is 0.0025 for cylindrical, and 0.004 for flat surfaces). The resulted data is pressure per square feet. These forces were them applied to a VM-1 motor operator.

Switches from 15.5 kV to 245 kV 900 kV BIL are the same as the test specimen, except they have shorter switch blade. Test performed on EV-2 245 kV 1050 kV BIL switch is the worst case test.

Results:

OR

Ratio

4.8

The following data was gathered

Ball Tip Corona Blade Total	TYPE R S R R	AREA (in2) 113 84 28.5 855		DIST (in) 216 199 188.5 95.5	REF. CALCUL 100MPH FORCES (Lb) 20.40277778 24.5 5.145833333 154.375	MOMENT (in-Lb) 4407 4875.5 969.9896 14742.81 24995.3
Blade or	ening					
Φ b =	90	Deg				
Wt=	150.25	Lbs				
CG@=	106.00	in				
Eff Wt	0	in-Lb				
Eff Arm	122.27	in				
Gear Effi	ciency	80	%			

Wind Forces (MPH) (Lbs)			Mechanism		
	Forces	Moment	Torsional And OB	Torsional	
	(Lbs)	(in-Lb)	Crank	Operator	
70	100	12248	5103	10206	
80	131	15997	6665	13331	
90	166	20246	8436	16872	
100	204	24995	10415	20829	
110	247	30244	12602	25204	
120	294	35993	14997	29994	
130	345	42242	17601	35202	
140	401	48991	20413	40826	
150	460	56239	23433	46866	
160	523	63988	26662	53323	
170	591	72236	30099	60197	
180	662	80985	33744	67487	
190	738	90233	37597	75194	
200	818	99981	41659	83318	

Conclusion

VM-1 motor mechanism can hold the blades of a three (3) phase EV-1 500kV, 1800BIL, in open position, when forces applied to blade, and carried though mechanism.

Written By:

Danny M. Hoss, Chief Engineer, Switch Products