Minutes of Meeting

May 6, 2014

WG: C37.04 - Standard Ratings and Requirements for AC High Voltage Circuit Breakers with rated maximum voltage above 1000 V

Chair: Jeff Nelson Vice Chair: Mike Crawford Secretary: Stephen Cary

Location: Orlando Participants: Members: Guests:

The meeting started with the chair introducing the attendees. The chair asked for all attendees to sign the roster and provided affiliation if not noted on the roster.

The meeting minutes were shown by the projector and the chairman reviewed the MOM for the meeting in Galveston. Minutes of the meeting were posted on the committee web site http://www.ewh.ieee.org/soc/pes/switchgear under the "Minutes of Meeting (Archive)".

The chair entertained a motion from John Webb to approve the minutes. Xi Zhu seconded the motion. The motion passed unanimously.

Status of Working Group - It was noted the PAR expires December 2015. A one year extension was discussed. A PAR extension was announced, and Erin Spiewak agreed to help with the application.

Topics discussed:

- 1. Indoor vs. Outdoor and Temperature ratings were discussed: It was discussed if two different ratings were required. At this time the WG decided to keep the wording as is.
- 2. C37.06.1: It was reaffirmed that C37.06.1 will not be included in C37.04
- 3. Terminal Loading: Victor Hermosillo presented what he has worked on based on IEEE 605 and the previously submitted Jeff Nelson table. The WG decided to leave the standard as is, harmonized with the bushing standard.
- 4. Alternate Mechanisms: A presentation from Denis Dufournet was made to show that contact wear and current was directly proportional but power of 1.7 to 1.8 depending on design. It was a WG decision to use wording from IEC as IEC has used it for 10+ years. It was also briefly discussed that short time and peak withstand tests are not addressed with the IEC proposal. Denis volunteered to suggest wording.
- 5. References were discussed. It was decided to not date references to agree with other C37 standards. If specific tables or figures are referenced it will be dated.
- 6. Inclusion of C37.04b into C37.04. All normative parts shall be brought into the main of C37.04. Ken Edwards and Denis Dufournet to work on the parts/pieces to be included.

- 7. TRV: TRV is not considered a rating. It will be considered a 'Performance Requirements'.
- 8. 800% endurance requirement was discussed. Reference IEC 62271-310. Denis Dufournet again presented proposal for 800% rating. The WG decided to keep the draft written as is, and let comments be made on first ballot.

The meeting adjourned on time.

Attendance:

LEEE PES Switchgear Committee HVCB_C37.04
ЧЦ
LEEE

.

		Place / Date of meeting :		
to denote attendance	Name / Role	Company Name / Email	City / Che State & Country	Checkbox to request
	Ahmed, Syed Shahab Uddin Guest	Siemens Energy Inc shahab.ahmed@siemens.com	×	
MUDON	Alexander, Roy Member	RWA Engineering	Ma, USA Cranberry Twp.	
Ma -	Aristizabal, Mauricio Member	ABB m.aristizabal@ieee.org	PA, USA Pittsburgh PA LISA	
	Balasubramanian, Ganesh Guest	Eaton Corporation ganeshbalasubramanian@eaton.com	Horseheads NY, USA	
	Barnett, Robert Member	Tennessee Valley Authority rpbarnett@ieee.org	Chattanooga TN, USA	
Camp)	Becker, George Member	The United Illuminating Company george.becker@uinet.com	Guilford CT. USA	
	Bergman, W.J. (Bill) Member	PowerNex Associates Inc. bergman@ieee.org	Calgary AB. Canada	
2 Cal	Billings, Stan Member	Mitsubishi Electric PP s.billings@ieee.org	Warrendale PA, USA	
	Bosma, Anne Member	ABB AB anne.bosma@ieee.org	Ludvika Sweden	
	Bottarelli, Alessandro Member	ABB alessandro.bottarelli@it.abb.com	BERGAMO Italy	
	Brehm, Cody Guest	American Transmission Company cbrehm@atcllc.com	Milwaukee WI. USA	
	Brown, Steven Member	Allen & Hoshall stevendbrown@ieee.org	Bartlett TN, USA	

02 May 2014 12:5 PM Subgroup: Committee Roster

Page 1 of 7

												J										
Suwanee GA, USA	Houston TY 11SA		Siliyina TN, USA	Forest Park GA, USA	Pomona CA, USA	Moon Township	PA, USA	MOON TOWNSHIP PA USA	141-chinaton	wasiiiiguu DC, USA	Lake Mary	FL, USA	Calgary	AB, Canada	Warrendale	PA, USA	Warrendale PA, USA	Cranberry Twp PA, USA	Carrollton	TX, USA	New York NY, USA	
Hitachi HVB, Inc. henb@hvbi.com	Powell Industries, Inc	tburse@ieee.org	Schneider Electric	Georgia Power Jacontro@couthernco.com	guantie@sound.com	gilbert.carmona@sce.com	Eaton Corporation stephenmcary@eaton.com	Eaton Corporation	stevenzchen@ieee.org	PEPCO ccchow@pepco.com	ABB	michael.b.christian@us.abb.com	Altalink	roggero.ciofani@altalink.ca	Mitsubishi Electric	dave.collette@meppi.com	Mitsubishi Electric Iucas.collette@meppi.com	Mitsubishi Electric	micraeliciawioiu@iccc.org	Vacuum Interrupters, Inc. idav@vacuuminterrupters.com	Consolidated Edison Co. of NY, Inc.	niny.weiny@weinin
Bufi, Arben	Member	Burse, reu Member	Byron, Eldridge	Member Cantrelle, Donald	Guest Carmona, Gilbert	Member	Cary, Stephen	Secretary Chen. Steven	Member	Chow, Chih	Member	Christian, Michael	Guesi	Ciofani, Roggero _{Member}		 Collette, Dave Guest 	Collette, Lucas	Crawford, Michael	Vice-Chair	Day, Jerod	Di Lillo, Patrick	Member
fra har	- A A	R	All			J.C.	20			1901	1	1111	letter C			1911	200	142/1	M(X ~		lo	

02 May 2014 12:5 PM Subgroup: Committee Roster

Page 2 of 7

Lakeland	Villeurbanne	Vancouver	Rugby	Jackson	Sainte-Julie	Paradise	Houston	Gainesville	Chattanooga	Baden	Phoenix	Charleroi	Smithville	Fort Worth
FL, USA	France	WA, USA	UK	MS, USA	QC, Canada	CA, USA	TX, USA	TX, USA	TN, USA	Switzerland	AZ, USA	PA, USA	MO, USA	TX, USA
Lakeland Electric, City of Lakeland, FL	Alstom Grid	Bonneville Power Administration	Vacuum Interrupters Limited	Engergy	BPR Energy Inc	Megger	Powell Electrical Systems	Circuit Breaker Sales, Co, Inc, - GroupCBS	Tennessee Valley Authority	ABB	Arizona Public Service Company	Alstom Grid	Alstom Grid Inc	Oncor Electric Delivery
randy.dotson@ieee.org	denis.dufournet@alstom.com	k.s.edwards@ieee.org	falkingham@ieee.org	tfield@entergy.com	fortin.marcel@ieee.org	robert.foster@megger.com	doug.giraud@powellind.com	pgrein@groupcbs.com	jthall@tva.gov	helmut.heiermeier@ch.abb.com	charles.hendrickson@aps.com	victor.hermosillo@alstom.com	todd.irwin@ieee.org	carlos.isaac@oncor.com
Dotson, Randall	Dufournet, Denis	Edwards, Ken	Falkingham, Leslie	Field, Thomas	Fortin, Marcel	Foster, Robert	Giraud, Douglas	Grein, Paul	Hall, John	Heiermeier, Helmut	Hendrickson, Charles	Hermosillo, Victor	Irwin, Todd	Isaac, Carlos
Member	Member	Member	Member	Member	Member	Guest	Member	Guest	Member	Member	Guest	Member	Guest	Guest
	A	X					ANG	R	吉	laz	2	130	<pre>b</pre>	

٠

02 May 2014 12:5 PM Subgroup: Committee Roster

Page 3 of 7

Detroit	Houston	MUMBAI	Williamsburg	Baldwinsville	Chalfont	Pomona	Maan Township	ور Loveland	Richland	Pittsburgh	Springfield	Forest Park	Kenner	Chicago
MI, USA	TX, USA	India	VA, USA	NY, USA	PA, USA	CA, USA	PA, USA	OH, USA	MS, USA	PA, USA	NJ, USA	GA, USA	LA, USA	IL, USA
Detroit Edison	Toshiba International Corporation	CG	Shawnee Power Consulting, LLC	Doble Engineering	KEMA-Powertest	Southern California Edison	Eaton	Schneider Electric Services - CE Powler Schutziews	Siemens Energy	Retired, but affiliated with Eaton Corp.	PSE&G	Southern Company Services	Entergy	S&C Electric Co.
jacksonr1600@gmail.com	jacob.joseph@tic.toshiba.com	sandeep.kulkarni@cgglobal.com	s.lambert@ieee.org	mlawrence@doble.com	paul.leufkens@dnvkema.com	liuhy@ieee.org	Iiliu2@eaton.com	livshitz@ieee.org	bjorn.lofgren@siemens.com	bill.long@ieee.org	antonio.mannarino@pseg.com	vamarsha@southernco.com	gmarti3@entergy.com	pete.marzec@sandc.com
Jackson, Richard	Joseph, Jacob	Kulkarni, Sandeep	Lambert, Stephen	Lawrence, Matthew	Leufkens, Paul	Liu, Hua Ying	Liu, Li	Livshitz, Albert	Lofgren, Bjorn	Long, Russell	Mannarino, Antonio	Marshall, Vincent	Martin, Gary	Marzec, Peter
Member	Guest	Guest	Member	Guest	Guest	Member	Guest	Member	Guest	Member	Member	Guest	Guest	Guest
				And	•	J.L.		41	Å			W	S	M

02 May 2014 12:5 PM Subgroup: Committee Roster

4

Page 4 of 7

Hampton	Chicago	Richmond	Canonsburg	glen Allen	Chattanooga	Berlin	Wendell	Denver	Detroit	Oakland	Orange	Twinsburg	Moon Township	New Stanton
GA, USA	IL, USA	VA, USA	PA, USA	VA, USA	TN, USA	Germany	NC, USA	CO, USA	MI, USA	CA, USA	CT, USA	OH, USA	PA, USA	PA, USA
Southern States	S&C Electric Company	Dominion	GFM Consulting LLC	Dominion	Tennessee Valley Authority	Siemens AG	Siemens Industry, Inc.	US Bureau of Reclamation	DTE Energy	Parcific Gas and Electric Company	The United Illuminating Company	FirstPower Group LLC	Eaton Corporation	Westinghouse Electric Company
neil.mccord@ieee.org	peter.meyer@sandc.com	dave.mitchell@dom.com	montillet@comcast.net	tom.mulcahy@dom.com	jeffnelson@ieee.org	joachim.oemisch@siemens.com	t.olsen@ieee.org	spatterson@usbr.gov	pelleritot@dteenergy.com	IIp0@pge.com	syed.rahman@uinet.com	frank.ricard@firstpowergroupIIc.com	tricciuti@ieee.org	riffeda@westinghouse.com
McCord, Neil	Meyer, Peter	Mitchell, Dave	Montillet, Georges	Mulcahy, Tom	Nelson, Jeffrey	Oemisch, Joachim	Oisen, T	Patterson, Shawn	Pellerito, Thomas	Phan, Lise	Rahman, Syed	Ricard, Frank	Ricciuti, Anthony	Riffe, Dave
Guest	Member	Member	Member	Member	Chair	Guest	Member	Guest	Member	Guest	Guest	Guest	Guest	Guest
	-	MARY		Land Land					A A				at l	

×

02 May 2014 12:5 PM Subgroup: Committee Roster

Page 5 of 7

Hampton GA, USA	richland MS, USA	Birmingham AL, USA	Smyrna TN, USA	Waukesha WI, USA	Byram MS, USA	Mt Pleasant PA, USA	West Burlington IA, USA	Greenwood SC, USA	Pickerington OH, USA	Salem VA, USA	Horseheads NY, USA	Piscataway NJ, USA	Charlotte NC, USA	Reading MA, USA
Southern States, LLC scarabhrian@amail.com	Siemens Energy, Inc		Schneider Electric carlschneider@ieee.org	American Transmission Company (ATC) cschuetz@atcllc.com	Consultant devkisharma@ieee.org	ABB Inc. sushil.shinde@us.abb.com	GE Energy - Industrial Solutions john.shullaw@ge.com	Eaton Corporation dsigmon@ieee.org	AEP mlskidmore@aep.com	h.melsmith@juno.com	Eaton Corporation r.kirkland.smith@ieee.org	IEEE e.spiewak@ieee.org	Duke Energy don.steigerwalt@duke-energy.com	DTS Technical Services dtstone@ieee.org
Roberts, Brian	Guest Rogers, Jon	Member Sauls, Roderick Member	Schneider, Carl Member	Schuetz, Carl Member	Sharma, Devki Member	Shinde, Sushil Member	Shullaw, John Guest	Sigmon, Michael Guest	Skidmore, Michael Member	Smith, H. Member	Smith, Robert Member	Spiewak, Erin Guest	Steigerwalt, Don Guest	Stone, David Corresponding Member
FRIE	ł	Ch l		CCS	AR	ANT	PR3	Wh 3	774			Z	Xio	

02 May 2014 12:5 PM Subgroup: Committee Roster

Ý

Page 6 of 7

ig, Donald Powell Industries Houston d.swing@ieee.org TX, USA		vernon.toups@slemens.com	b, John ABB Florence SC, USA SC, USA	r, Dong Sun HICO America Greensburg Angle America PA, USA	łer, Lukas	Xi GE Energy Management Atlanta ber xi.zhu@ieee.org GA, USA	t KEMA Netherlands Arnhem	de Ligt, James CANA High Voltage Ltd. Calgary ber Jimvandeligt@shaw.ca AB, Canada	VINCENT HICO ANGRI	Eastman INCON eastman@franklankachin.com Saco, NE eastman@franklankachin.com Nashuille thechic Service Nashville, TH Savest Payers@nespower.com	, Volney Megger volney many de magger com. Dallas, TX	@ LONG, R. Williawy Redized billiongereecon P. Hsburgh P.A. 2015 Farr Wy Show MEder Steven Lorry SPORT Extraction Autom Ly Show MEder Stevens time Hy. Meger @ stewers 100 - Toekson, MS
Swing, Donald Guest	Toups, Vernon	Member	Webb, John Member	Yoon, Dong Sun Guest	Zehnder, Lukas _{Guest}	Zhu, Xi Member	te Paske, Henk Guest	van de Ligt, James Member		John Eastman Roy Ayers	Naranto, Volney Guest	Timothy Show MEder

a

ς.

	P	
Becktel OG & C SSINGHIS @ Beektelicom SSINGHIS @ Beektelicom Siemens Jackson MS arsey. Weeks@ Stemenseom Schneider electric cinemads of Pari Fixed schneider-electric con guist Schneider electric cinemads of Pari Fixed schneider-electric con guist	henk. tepaske Eduvgl. com Firstener69 csutterresenstenercon Mar. Rans, A. Kunko QNS. ABS. com Guess Guthern Company Birminhum, AL Enhutchie Southernco. com	
Beektel OG & C SSINGHIE OG & C SSINGHIE Q. BREKKELGOM Siemens Jackson MS Christer. Weeks 8 Schneider electric cincinnals of Part. Ford schni Schneider electric cincinnals of Part. Ford schni Schneider electric cincinnals of Part Ford schni		FirstErery Corp. rbrowning & firstenergy corp. com
Sumita Engli Casey Weeks S Paul Fox s Koth Boach-Boat-end	Henk te Paske CHRISTORIER SLATTERY CARL KLAINKO CARL KLAINKO Neil Hutchins	Jae Browning

*

٠

PC37.04 (C37.06, NEMA SG4)

Jeff Nelson - Chair Mike Crawford - Vice Chair Stephen Cary - Secretary

Agenda

- Introductions
- Approval of Fall 2013 Minutes
- Moving forward
 - PAR expires December 2015
- Items to discuss

- Indoor vs. Outdoor ambient temperature rating:
 - Shall there be two ratings?
- C37.06.1 into C37.04?
 - Previously discussed, to not include as part of this revision
- Terminal Loading:
 - Victor H (BRIEF overview of proposed table)

- Definitions to remain in C37.100.1
- Piecewise Testing
 - Ken Edwards, Denis; C37.09 use C37.59 as starting point?
- Inclusion of C37.04b
 - Document merger, pertinent parts, etc
- TRV: Rating or not?
 - Shall we call a horse a horse? (Or a Rating a Requirement?)

- References: Dated or Un-Dated?
 - C37.04 is planning on using Un-dated References (as in C37.010)
- 800%
 - Denis' proposal

Definitions

3.5.124

operating mechanism

part of the circuit-breaker that actuates the main contacts

3.5.125

power kinematic chain

mechanical connecting system from and including the operating mechanism up to and including the moving contacts

NOTE See also A.3.5.111 of IEC 62271-102.

3.5.126

alternative operating mechanism

an alternative operating mechanism is obtained when a change in the power kinematic chain of the original operating mechanism or the use of an entirely different operating mechanism leads to the same mechanical characteristics.

NOTE 1 Mechanical characteristics are defined in 6.101.1.1. The use of mechanical characteristics and related requirements are described in Annex N.

NOTE 2 An alternative operating mechanism can utilise an operating principle different from the original one (for example the alternative mechanism can be spring-operated and the original hydraulic).

NOTE 3 A change in the secondary equipment does not lead to an alternative operating mechanism. However, it has to be checked that changes in the opening time/minimum clearing time does not entail different requirements for test-duty T100a (see 6.102.10).

Subclause 6.101.1.1

6.101.1.1 Mechanical characteristics

At the beginning of the type tests, the mechanical characteristics of the circuit-breaker shall be established, for example, by recording no-load travel curves. This may be done also by the use of characteristic parameters, for example, momentary speed at a certain stroke etc. The mechanical characteristics will serve as the reference for the purpose of characterising the mechanical behaviour of the circuit-breaker. Furthermore, the mechanical characteristics shall be used to confirm that the different test samples used during the mechanical, making, breaking and switching type tests behave mechanically in a similar way. The test in which this reference is gained is referred to as reference no-load test and the curves or other parameters resulting from it as reference mechanical characteristics. The reference no-load test may be taken from any appropriate no-load test being part of an individual type test.

The following operating characteristics shall be recorded:

- mechanical characteristics for opening and closing operation;
- closing time;
- opening time.

The mechanical characteristics shall be produced during a no-load test made with a single O operation and a single C operation at rated supply voltage of operating devices and of auxiliary and

control circuits, rated functional pressure for operation and, for convenience of testing, at the minimum functional pressure for interruption.

The opening time and the closing time recorded in the reference no-load test shall be used as reference closing and reference opening time. The allowable deviations from these reference times correspond to the tolerances given by the manufacturer when performed under the same conditions as used for the procedure to produce the reference mechanical characteristics.

Annex N gives requirements and explanation on the use of mechanical characteristics.

Annex N

Use of mechanical characteristics and related requirements

At the beginning of the type tests, the mechanical characteristics of the circuit-breaker shall be established, for example, by recording no-load travel curves. This may be done also by the use of characteristic parameters, for example momentary speed at a certain stroke etc. The mechanical characteristics will serve as the reference for the purpose of characterising the mechanical behaviour of the circuit-breaker.

The mechanical characteristics shall be used to confirm that the different test samples used during the mechanical, making, breaking and switching type tests behave mechanically in a similar way. All test samples used for mechanical, making, breaking and switching type tests shall have a mechanical characteristic within the following described envelopes. Care should be exercised in the interpretation of the curves when, due to variable measuring methods at different laboratories, a direct comparison between the envelopes cannot be made.

The type and location of the sensor used for the record of the mechanical characteristics shall be stated in the test report. The mechanical characteristic curve which can be measured at any part of the power kinematic chain may be recorded continuously or discretely. In case of discrete measurement, at least 20 discrete values should be given for the complete stroke.

The mechanical characteristics shall be used for determining the limits of the allowable deviations over or under this reference curve. From this reference curve, two envelope curves shall be drawn from the instant of contact separation to the end of the contact travel for the opening operation and from the beginning of the contact travel to the instant of contact touch for the closing operation. The distance of the two envelopes from the original course shall be ± 5 % of the total stroke as shown in Figure 23b. In case of circuit-breakers with a total stroke of 40 mm or less the distance of the two envelopes from the original course shall be ± 2 mm. It is recognised that for some designs of circuit-breakers, these methods may be unsuitable, as for example for vacuum circuit-breakers or for some circuit-breakers rated less than 52 kV. In such cases the manufacturer shall define an appropriate method to verify the proper operation of the circuit-breaker.

If mechanical characteristics other than curves are used, the manufacturer shall define the alternative method and the tolerances used.

The series of Figures 23a to 23d are for illustrative purposes and only illustrate the opening operation. They are idealised, and do not show the variation in profile caused by the friction effect of the contacts or the end of travel damping. In particular, it is important to note that the effects of damping are not shown in these diagrams. The oscillations produced at the end of travel are dependent upon the efficiency of the damping of the drive system. The shape of these oscillations may be a deliberate function of the design and may slightly vary from one specimen to another. Therefore, it is important that any variations in the curve at the end of the stroke, which are outside the tolerance margin given by the envelope, are fully explained and understood before they are

rejected or accepted as showing equivalence with the reference curves. In general, all curves should fall within the envelopes for acceptance.

The envelopes can be moved in the vertical direction until one of the curves covers the reference curve. This gives maximum tolerances over the mechanical characteristics of -0%, +10% and -10%, +0%, respectively as shown in Figures 23c and 23d. The displacement of the envelope can be used only once for the complete procedure in each test in order to get a maximum total deviation from the reference characteristic of 10%.

Table N.1 lists type tests and relevant reference mechanical characteristics for no-load, making and breaking tests.

Applicable subclauses	Tests where the records shall be taken	Evaluation method	Application/Notes
6.101.1.1 Mechanical characteristics	No-load test before the beginning of type tests	Not applicable	General guide for reference mechanical characteristics
6.101.1.3 Characteristics and settings of the circuit-breaker to be recorded before and after the tests	Before and after the mechanical and environmental tests	Not applicable	Items listed in 6.101.1.3 to be recorded
6.101.2.2 Condition of the circuit-breaker before the (mechanical) test	No-load test before the mechanical test	а	Mechanical test on a separately operated single pole of a three-pole circuit- breaker
6.101.2.5 Acceptance criteria for the mechanical operation tests	No-load test after the mechanical test	b	
6.101.3.3 Low temperature test	No-load test before and after the low temperature test	b	Depending on minimum temperature specification
6.101.3.4 High temperature test	No-load test before and after the high temperature test	b	
6.101.4.2 Test procedure (humidity test)	During and after the tests (no-load operations)	b	Conditional test when required
6.101.6 Static terminal load test	No-load test before and after the terminal load test	a	Refer also to the note in 6.101.6
6.102.2 Number of test specimens	No-load test before making and breaking tests	a	For the second test specimen, if more than one specimen is used
6.102.3.3 Multi-enclosure type	No-load test before the test	a	For commonly operated multi-enclosure type

Table N.1 – Summary of type tests related to mechanical characteristics

	Making and breaking operation based on T100s	C	
6.102.4.1 Single-phase testing of a single pole of a three-pole	No-load test before the test	a	For circuit-breakers with common operating
circuit-breaker	Making and breaking operation based on T100s	C	mechanism
6.102.4.2 Unit testing	No-load test before the test	a	For circuit-breakers with two or more units not separately
	Making and breaking operation based on T100s	c	operated within one pole
6.102.6 No-load operation before (making and breaking) tests	No-load tests before the test ^d	a, d	For all making and breaking tests
6.102.7 Alternative operating mechanism	No-load test before the test	a	For equivalent alternative operating mechanisms
	Making and breaking operation based on T100s	c	
6.102.9.3 Condition after a short-circuit test-duty	No-load tests after the test-duty	d	If components are changed or maintenance is carried out after the test-duty
6.102.9.3 Condition after a short-circuit test series	No-load tests after the test series	d	
6.112.2 Class E2 circuit- breakers intended for auto- reclosing duty	No-load tests after the test series	d	Conditional test when required
^a evaluation to the method	d given in 6.101.1.1; com	parison of the	mechanical characteristics
^b evaluation to the method	d given in subclauses 6.1	01.1.3 and 6.1	01.1.4
^c evaluation to the method	d given in subclauses 6.1	02.4.1 for sing	le-pole testing
d testing method given in 6	5.102.6		

Figures

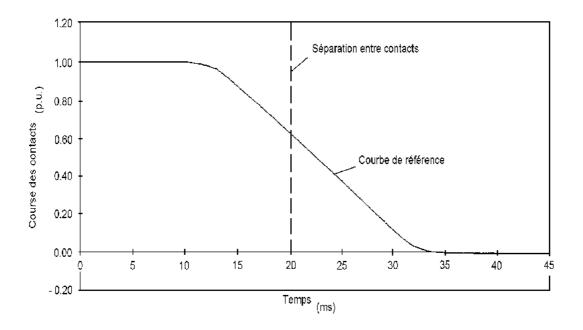


Figure 23a – Reference mechanical travel characteristics (idealised curve)

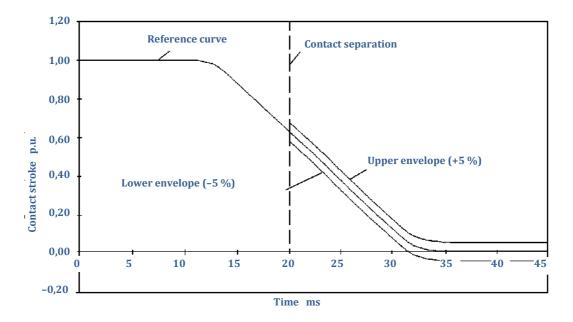


Figure 23b – Reference mechanical travel characteristics (idealised curve) with the prescribed envelopes centered over the reference curve (+5 %, -5 %), contact separation in this example at time t = 20 ms

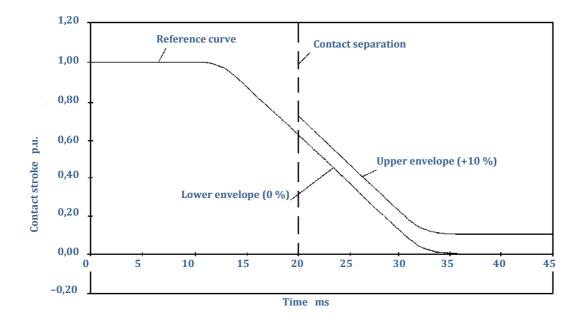


Figure 23c – Reference mechanical travel characteristics (idealised curve) with the prescribed envelopes fully displaced upward from the reference curve (+10 %, -0 %), contact separation in this example at time t = 20 ms

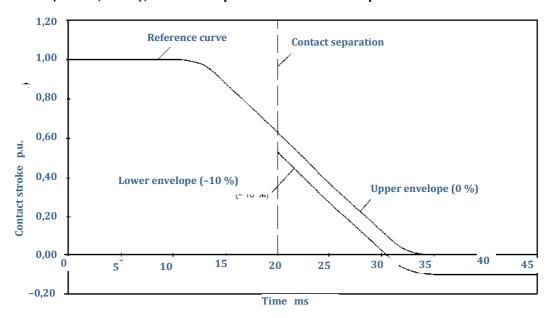


Figure 23d – Reference mechanical travel characteristics (idealised curve) with the prescribed envelopes fully displaced downward from the reference curve (+0 %, -10 %), contact separation in this example at time t = 20 ms

Service Capability for Circuit Breakers with Rated Voltages ≥ 72.5kV

Test Program 1 with Method 1 based on accumulation of currents to reach 800% symmetrical interrupting capability

4 interruptions at 100% I_{SC} (T100s, synthetic tests)

14 interruptions at 30% I_{SC}

Total is 400 + 420 = 820 %

Requirement is met

Test Program 2 with Method 2 based on equivalent wear

4 interruptions at 100% I_{SC} (T100s, synthetic tests)

4 interruptions at 60% I_{SC} (T60, synthetic tests) : wear is equivalent to 4 x (60/30)² = 16 interruptions at 30% I_{SC}

More severe than test program 1, therefore requirement is met

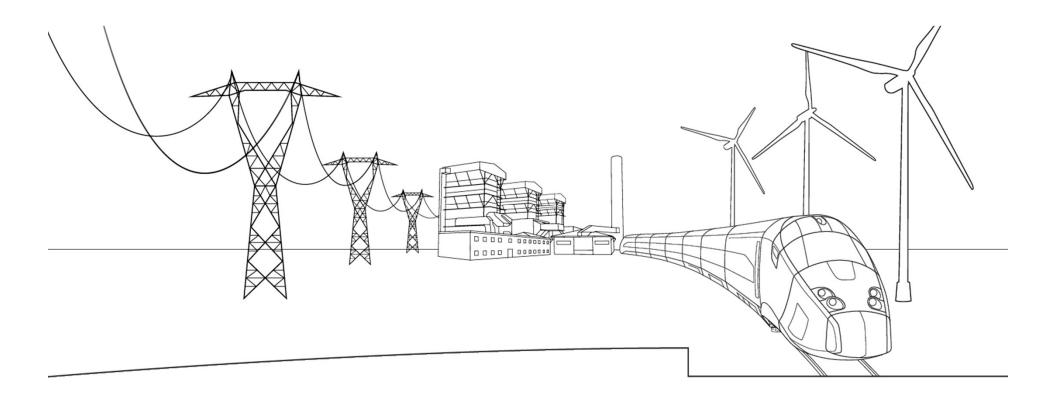
For circuit breakers \geq 72.5kV: service capability is demonstrated by performing T100s and T60 on the same circuit breaker (3-phase tests) or same pole (single phase tests).

Service Capability for Circuit Breakers with Rated Voltages ≥ 72.5kV

Justification that the requirement is sufficient

- the requirement should be based on system need during the service life of a circuit breaker.

- It is different for medium voltage and high-voltage (as done now in IEC)


- For rated voltages \geq 72.5kV

A study done by CIGRE lead to the values in IEC 62271-310.

For a 40kA circuit breaker the need is 10 + 3 interruptions of T60 (see Table 2). In terms of wear, it corresponds to $13 \times (60/100)^{1.8} = 13 \times 0.4 = 5.2$ interruptions at 100% symmetrical interrupting capability.

It is covered by Test Program 2 with 4 interruptions of T100s and the 4 interruptions of T60 (equivalent to $4 + 4 \times 0.4 = 5.6$ interruptions at 100% symmetrical interrupting capability).

Alternatively 6 interruptions at 100% symmetrical interrupting capability could be done.

Terminal Loads

V. Hermosillo

May 5th, 2014

Table 4-T	erminal	mechanical	loading
-----------	---------	------------	---------

Rated maximum voltage	Rated continuous current	Static horiz	Static vertical force ^a	
		Longitudinal (N)	Transverse (N)	Vertical (N)
Below 100 kV	1200 A and below Above 1200 A	500 750	400 500	500 750
123 kV to 170 kV	2000 A and below Above 2000 A	1000 1250	750 750	750 1000
245 kV	All	1250	1000	1250
362 kV to 800 kV	All	1750	1250	1250

^aVertical axis forces are upward and downward.

Terminal Load IEEE C37.09

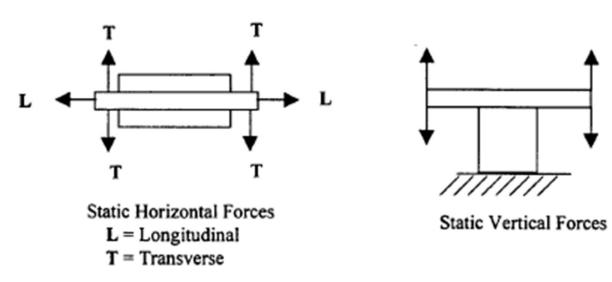
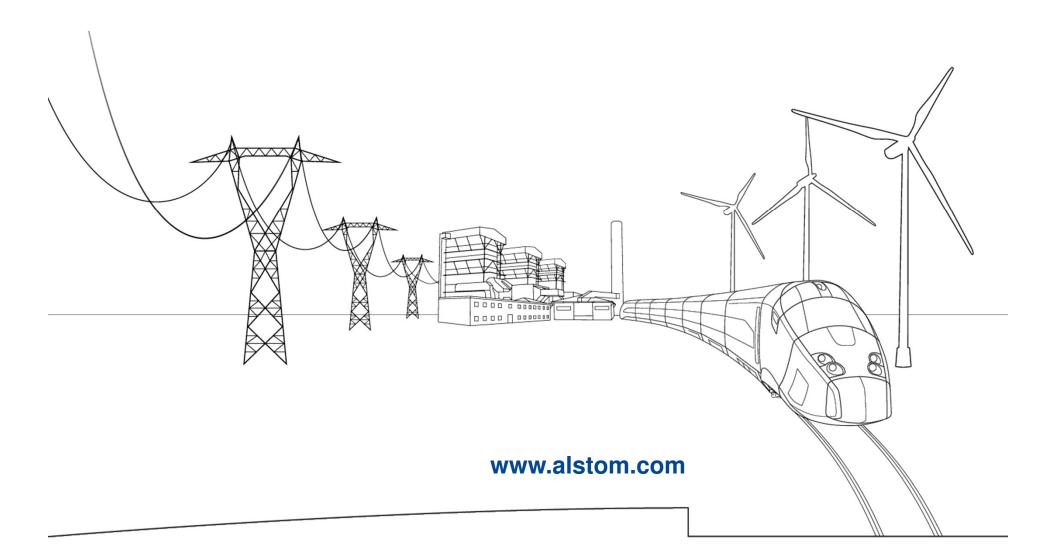


Figure 8-Direction of terminal mechanical loading forces

Table 14 – Examples of static horizontal and vertical forces for static terminal load test


Rated voltage range	Rated current range		th	Static vertical force (vertical axis-upward and downward)		
Ur	Ι _r	Longitudinal F_{thA}	Transversal $F_{ m thB}$	F_{tv}		
kV	A	Ν	N	N		
< 100	800 – 1 250	500	400	500		
< 100	1 600 – 2 500	750	500	750		
100 – 170	1 250 – 2 000	1 000	750	750		
100 – 170	2 500 – 4 000	1 250	750	1 000		
245 – 362	1 600 – 4 000	1 250	1 000	1 250		
420 - 800	2 000 – 4 000	1 750	1 250	1 500		

Terminal Load – Calculation with Rigid Connections IEEE 605

Rated	Force from Fault Current [N]									
Maximu	Rated Interrupting Current [kA]									
m	12.5	16	20	25	31.5	40	50	63	80	
<100 kV	500	820	1281	2002	3178	5124	8007	12712	20497	
123 to 145	200	328	512	801	1271	2050	3203	5085	8199	
170 to 245	167	273	427	667	1059	1708	2669	4237	6832	
Over 300	112	184	287	449	712	1149	1795	2849	4594	
Using Half-cycle Decrement Factor (Df) for X/R = 17										
Rated	Force from Fault Current [N]									
Maximu		Rated Interrupting Current [kA]								
m	12.5	16	20	25	31.5	40	50	63	80	
<100 kV	420	688	1075	1680	2666	4300	6718	10666	17198	
123 to 145	168	275	430	672	1067	1720	2687	4266	6879	
170 to 245	140	229	358	560	889	1433	2239	3555	5733	
Over 300	94	154	241	376	598	964	1506	2391	3855	
Using Half	-cycle Decr	ement Fac	ctor (Df) fo	r X/R = 17 8	& Failure c	onstant (Γ)	= 0.866 for	3-phase fa	ault	
Rated				Force from	m Fault Cu	rrent [N]				
Maximu				Rated Inter	rupting Cu	ırrent [kA]				
m	12.5	16	20	25	31.5	40	50	63	80	
<100 kV	364	596	931	1454	2309	3723	5818	9237	14894	
123 to 145	145	238	372	582	924	1489	2327	3695	5958	
170 to 245	121	199	310	485	770	1241	1939	3079	4965	
Over 300	82	134	209	326	518	835	1304	2070	3338	

